Iranian Journal of Mathematical Sciences and Informatics Vol. 19, No. 1 (2024), pp 95-105 DOI: 10.61186/ijmsi.19.1.95

Finite Groups with Specific Number of 2-Engelizers

Raheleh Khoshtarash^a, Mohammad Reza Rajabzadeh Moghaddam^{b,c*}, Mohammad Amin Rostamyari^b

^aDepartment of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran

^bDepartment of Mathematics, Khayyam University, Mashhad, Iran ^cDepartment of Pure Mathematics, Centre of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O.Box 1159, Mashhad, 91775, Iran

E-mail: rakho860gmail E-mail: m.r.moghaddam0khayyam.ac.ir; rezam0ferdowsi.um.ac.ir E-mail: m.a.rostamyari0khayyam.ac.ir

ABSTRACT. In 2016, the second and third authors introduced the notion of 2-Engelizer of the element x in a given group G and denoted the set of all 2-Engelizers in G by $E^2(G)$. They also constructed the possible values of $|E^2(G)|$ [Bull. Korean Math. Soc., **53**(3), (2016), 657-665]. In the present paper, we classify all non 2-Engel finite groups G, when $|E^2(G)| = 4, 5.$

Keywords: 2-Engelizer subgroup, 2-Engel element, 2-Engel group.

2020 Mathematics subject classification: 20F45, 20B05, 20E07.

1. INTRODUCTION

For an element x of a given group G, we call

$$E_G^2(x) = \{ y \in G : [x, y, y] = 1, [y, x, x] = 1 \}$$

*Corresponding Author

Received 31 July 2019; Accepted 10 February 2021 ©2024 Academic Center for Education, Culture and Research TMU

to be the set of 2-Engelizer of x in G. The family of all 2-Engelizers in G is denoted by $E^2(G)$ and $|E^2(G)|$ denotes the number of distinct 2-Engelizers in G (see [8] for more details).

As an example consider $Q_{16} = \langle a, b : a^8 = 1, a^4 = b^4, b^{-1}ab = a^{-1} \rangle$, the Quaternion group of order 16 and take the element b in Q_{16} . Then one can easily check that the 2-Engelizer set of b is as follows:

$$E_{Q_{16}}^2(b) = \{1, a^2, a^4, a^6, b, a^2b, a^4b, a^6b\}.$$

We remark that for the identity element e of G, we have $G = E_G^2(e)$ and hence $G \in E^2(G)$. Clearly in general, the 2-Engelizer of each non-trivial element of a group G does not form a subgroup. (see [8], Example 2.3 for more information).

In 2016, Moghaddam and Rostamyari [8] gave a condition under which the 2-Engelizer of each non-trivial element of G forms a subgroup.

Theorem 1.1. ([8], Theorem 2.5) Let G be an arbitrary group. Then the set of each 2-Engelizer of a non-trivial element in G forms a subgroup if and only if the group $x^{E_G^2(x)}$ is abelian, for all non-trivial element x of G.

They also proved that $|E^2(G)| \ge 4$, for any non 2-Engel group G, with abelian $x^{E_G^2(x)}$, for all $1 \ne x \in G$.

In the present article, we study the groups with such properties. One of our goals in this article is to calculate the number of 2-Engelizers of Dihedral group of order 2n. Also, our main result is a characterization of finite groups with exactly $|E^2(G)| = 4, 5$.

2. Preliminary Results

An element x of a group G is called a *right 2-Engel* element, if for every $y \in G$, $[x, _2 y] = [x, y, y] = 1$, and the set of all right 2-Engel elements of G is denoted by $R_2(G)$. Many mathematicians have done interesting researches in this area (see [1, 6, 7, 9] for more information).

The following lemmas show the relationship between 2-Engelizers and the group G, even if the group is infinite. Also their results play an important role in finding lower bound for $|E^2(G)|$.

Lemma 2.1. Let G be a group. Then $R_2(G)$ is the intersection of all 2-Engelizers in G.

Proof. Clearly, $R_2(G) \subseteq \bigcap_{x \in G} E_G^2(x)$. Now, suppose $y \in \bigcap_{x \in G} E_G^2(x)$ then [x, y, y] = [y, x, x] = 1, for all $x \in G$ which gives $y \in R_2(G)$.

Lemma 2.2. A group G is the union of 2-Engelizers of all elements in $G \setminus R_2(G)$, that is to say $G = \bigcup_{x \in G \setminus R_2(G)} E_G^2(x)$.

Proof. Clearly, $\bigcup_{x \in G \setminus R_2(G)} E_G^2(x) \subseteq G$. By the definition, if $g \in R_2(G)$ then $g \in E_G^2(x)$, for every $x \in G$ and hence $g \in \bigcup_{x \in G \setminus R_2(G)} E_G^2(x)$. In case $g \in G$

 $G \setminus R_2(G)$, then $g \in E_G^2(g)$ and so

$$g \in \bigcup_{x \in G \setminus R_2(G)} E_G^2(x).$$

Therefore $G \subseteq \bigcup_{x \in G \setminus B_2(G)} E_G^2(x)$ and the proof is complete.

Lemma 2.3. Let $|E_{G/R_2(G)}^2(xR_2(G))| = p$, for some non right 2-Engel element x of a group G and a prime number p. For all $y \in G \setminus R_2(G)$, if $E_{G/R_2(G)}^2(xR_2(G)) = E_{G/R_2(G)}^2(yR_2(G))$, then

$$E_G^2(x) = E_G^2(y).$$

Proof. Clearly,

$$E_G^2(x)/R_2(G) \subseteq E_{G/R_2(G)}^2(xR_2(G)).$$

Assume that $E_G^2(x)/R_2(G) < E_{G/R_2(G)}^2(xR_2(G))$. As $|E_{G/R_2(G)}^2(xR_2(G))| = p$ and $|E_G^2(x)/R_2(G)|$ divides $|E_{G/R_2(G)}^2(xR_2(G))|$, we get $|E_G^2(x)/R_2(G)| = 1$ and so $E_G^2(x) = R_2(G)$. Thus $x \in R_2(G)$, which is a contradiction. Therefore $E_G^2(x)/R_2(G) = E_{G/R_2(G)}^2(xR_2(G))$.

Clearly for all $y \in G \setminus R_2(G)$,

$$E_G^2(y)/R_2(G) \subseteq E_{G/R_2(G)}^2(yR_2(G)) = E_{G/R_2(G)}^2(xR_2(G)).$$

Hence

 $|E_{G/R_2(G)}^2(xR_2(G))| = |E_G^2(y)/R_2(G)|, \text{ and so } E_G^2(y)/R_2(G) = E_G^2(x)/R_2(G).$ Thus $E_G^2(x) = E_G^2(y)/R_2(G) = E_G^2(y)/R_2(G) = E_G^2(x)/R_2(G).$

$$\frac{E_{\tilde{G}}(x)}{R_2(G)} = \frac{E_{\tilde{G}}(y)}{R_2(G)} = \{R_2(G), x_1R_2(G), x_2R_2(G), \dots, x_{p-1}R_2(G)\},\$$

where $\{x_1, ..., x_{p-1}\} \subseteq (E_G^2(x) \cap E_G^2(y)) \setminus R_2(G)$. So $E_G^2(x) = E_G^2(y)$.

In the next result we calculate the number of 2-Engelizers of Dihedral group of order 2n, except D_8 , as it is nilpotent of class 2.

Proposition 2.4. Let D_{2n} be the Dihedral group of order $2n(n \neq 4)$. Then $|E^2(D_{2n})| = n + 2$, when n is odd and otherwise $\frac{n}{2} + 2$.

Proof. Let $D_{2n} = \langle x, y \mid x^n = y^2 = 1, yxy^{-1} = x^{-1} \rangle = \{1, x, \dots, x^{n-1}, y, yx, \dots, yx^{n-1}\}$ and $n \ge 3$. Now $E_{D_{2n}}^2(1) = D_{2n}$. Next consider $E_{D_{2n}}^2(x^i)$, where $1 \le i \le n-1$. Suppose $yx^j \in E_{D_{2n}}^2(x^i)$, then

$$[yx^j, x^i, x^i] = 1, [x^i, yx^j, yx^j] = x^{4i} = 1 \Rightarrow n \mid 4i.$$

If n is odd then n divides i, a contradiction. If n is even then $i = \frac{n}{2}$ or $\frac{n}{4}$, (if $\frac{n}{4} \in \mathbb{Z}$). Therefore $E_{D_{2n}}^2(x^i) = \langle x \rangle$, if n is odd or n is even and $i \neq \frac{n}{2}, \frac{n}{4}$.

Next consider $E_{D_{2n}}^2(yx^j)$, $0 \leq j \leq n-1$. Suppose $x^i \in E_{D_{2n}}^2(yx^j)$ then by a similar argument $i = \frac{n}{2}$ or $\frac{n}{4}$. Therefore if n is odd then $x^i \notin E_{D_{2n}}^2(yx^j)$ and if n is even then $x^{\frac{n}{2}}$ and $x^{\frac{n}{4}} \in E_{D_{2n}}^2(yx^j)$. Moreover, $E_{D_{2n}}^2(x^{\frac{n}{2}}) = E_{D_{2n}}^2(x^{\frac{n}{4}}) = D_{2n}$.

Now suppose $yx^k \in E^2_{D_{2n}}(yx^j)$, where $0 \leq k \neq j \leq n-1$. Then

$$[yx^{k}, yx^{j}, yx^{j}] = x^{-4j+4k} = 1 \Rightarrow n \mid 4(k-j),$$

$$[yx^{j}, yx^{k}, yx^{k}] = x^{4j-4k} = 1 \Rightarrow n \mid 4(j-k).$$

If n is odd then n divides k - j or j - k, a contradiction. If n is even then $k - j = n, k - j = -n, k - j = \frac{n}{2}$ or $k - j = \frac{n}{4}$. Hence if n is odd

$$E_{D_{2n}}^2(1) = D_{2n}, E_{D_{2n}}^2(x^i) = \langle x \rangle, E_{D_{2n}}^2(yx^j) = \{1, yx^j\},\$$

and so $|E^2(D_{2n})| = n + 2$.

Also, as $yx^{j-n} = yx^{j+n}$ for even number n

$$E_{D_{2n}}^{2}(x^{\frac{n}{2}}) = E_{D_{2n}}^{2}(x^{\frac{n}{4}}) = E_{D_{2n}}^{2}(1) = D_{2n}, E_{D_{2n}}^{2}(x^{i}) = \langle x \rangle (i \neq \frac{n}{2}, \frac{n}{4}),$$
$$E_{D_{2n}}^{2}(yx^{j}) = \{1, yx^{j}, x^{\frac{n}{2}}, x^{\frac{n}{4}}, yx^{j+\frac{n}{2}}, yx^{j+\frac{n}{4}}\}.$$
$$\text{as } |E^{2}(D_{2n})| = \frac{n}{2} + 2.$$

Thus $|E^2(D_{2n})| = \frac{n}{2} + 2.$

In the next remark, we discuss the important property of the elements of a given group G, which will be used in Example 3.6.

Remark 2.5. Let $x, y \notin Z(G)$ and $xy \in Z(G)$, then for all $g \in G$

$$[xy,g] = 1 \Rightarrow g^x = g^{y^{-1}}.$$

Thus $\phi_x(g) = \phi_{y^{-1}}(g)$ implies that $\phi_{xy} = id$ and so $x = y^{-1}$. Similarly, if $x, y \notin R_2(G)$ and $xy \in R_2(G)$, then for every $g \in G$

$$[xy, g, g] = 1 \Rightarrow g^{[x,g]^y} = g^{[y,g]^{-1}}$$

Hence $[x, g]^y = [g, y]$ and again $x = y^{-1}$.

3. Main Results

Many authors have studied the influence of the number of centralizers on a finite group G (see [2, 3, 5]). It is clear that a group is 1-centralizer if and only if it is abelian. In [3] Belcastro and Sherman proved that there are no groups with 2 or 3 centralizers. They also proved that G has 4 centralizers if and only if $G/Z(G) \cong C_2 \times C_2$ and G has 5 centralizers if and only if $G/Z(G) \cong C_3 \times C_3$ or S_3 . Ashrafi in [2] showed that if G has 6 centralizers, then $G/Z(G) \cong D_8, A_4, C_2 \times C_2 \times C_2$ or $C_2 \times C_2 \times C_2 \times C_2$.

The above results concerning the centralizers give us some motivates to study the concept of 2-Engelizers of groups. Our results in this section show that some known facts on centralizers of groups can be established for 2-Engelizers, and in some cases the results are different and more interesting.

Note that, in this section we work with groups under the condition that their sets of 2-Engelizers must be subgroups.

Theorem 3.1. Let G be a group such that $G/R_2(G) \cong C_p \times C_p$, for any prime number p. Then $|E^2(G)| = p + 2$.

Proof. Assume that $G/R_2(G) \cong C_p \times C_p$, then

$$\frac{G}{R_2(G)} = \langle xR_2(G), yR_2(G) : x^p, y^p, [x,y] \in R_2(G) \rangle.$$

Clearly any non-trivial proper subgroup $H/R_2(G)$ of $G/R_2(G)$ has order p. Therefore $H = R_2(G) \cup h_1R_2(G) \cup h_2R_2(G) \cup ... \cup h_{p-1}R_2(G)$, where $h_i \in H \setminus R_2(G)$ for all $1 \leq i \leq p-1$. Thus the proper subgroups of G properly containing $R_2(G)$ are one of the following forms:

$$R_2(G) \cup xR_2(G) \cup x^2R_2(G) \cup \dots \cup x^{p-1}R_2(G);$$

$$R_2(G) \cup yR_2(G) \cup y^2R_2(G) \cup \dots \cup y^{p-1}R_2(G) \text{ or }$$

 $R_2(G) \cup x^i y^j R_2(G)$, for all $1 \leq i, j \leq p-1$. Note that, for all $1 \leq i, j \leq p-1$, it is easy to see that $x^i y^j R_2(G) = x^j y^i R_2(G)$ since $[x, y] \in R_2(G)$. Hence we have only p-1 proper subgroups of G of latest type. For simplicity, we denote all the above subgroups by $H_1, H_2, ..., H_{p+1}$, respectively. Now we show that $H_1, H_2, ..., H_{p+1}$ are the only proper 2-Engelizers of G. Let $a \in G \setminus R_2(G)$ then $aR_2(G) = bR_2(G)$, for some

$$b \in \{x,...,x^{p-1},y,...,y^{p-1},xy,xy^2,...,xy^{p-1},...,x^{p-1}y,...,x^{p-1}y^{p-1}\}.$$

Note that the order of each 2-Engelizers of $G/R_2(G)$ can not be p^2 or 1. Therefore $E_{G/R_2(G)}^2(aR_2(G)) = E_{G/R_2(G)}^2(bR_2(G))$ and Lemma 2.3 imply that $E_G^2(a) = E_G^2(b)$. Again let $b \in H_i \setminus R_2(G)$ then $E_G^2(b) \subseteq \bigcup_{j=1}^{p+1} H_j$, as H_1, \ldots, H_{p+1} are the only proper subgroups of G. Also $b \in E_G^2(b)$, and hence $E_G^2(b) \neq H_j$, for $1 \leq i \neq j \leq p+1$. Therefore $E_G^2(b) = H_i$, and $H_1, H_2, \ldots, H_{p+1}$ are the only proper 2-Engelizers of G and so $|E^2(G)| = p+2$.

In 1926, Scorza [10] showed the following result, which is useful for our further investigation (see also [4]).

Theorem 3.2. ([4], Theorem 1) A group G is the non-trivial union of three subgroups if and only if it is homomorphic to the Klein four group.

Now, using the above theorem we have the following result.

Theorem 3.3. Let G be a group, then $|E^2(G)| = 4$ if and only if $G/R_2(G) \cong C_2 \times C_2$.

Proof. Using Theorem 3.1, it is enough to show that $|E^2(G)| = 4$ implies that $G/R_2(G) \cong C_2 \times C_2$.

Suppose $|E^2(G)| = 4$, then $E^2(G) = \{G, E_G^2(x), E_G^2(y), E_G^2(z)\}$, where x, y and z are non 2-Engel elements of G. Thus $G = E_G^2(x) \cup E_G^2(y) \cup E_G^2(z)$, as G is the union of its proper 2-Engelizers. Hence, Theorem 3.2 implies that $G/(E_G^2(x) \cap E_G^2(y) \cap E_G^2(z))$ is isomorphic with Klein four group.

Now, it is enough to show that $R_2(G) = E_G^2(x) \cap E_G^2(y) \cap E_G^2(z)$. Clearly $E_G^2(xy)$ must be equal to G, $E_G^2(x)$, $E_G^2(y)$ or $E_G^2(z)$.

If $E_G^2(xy) = G$ then $xy \in R_2(G)$ and [xy, y, y] = 1 implies that [x, y, y] = 1. Also, [y, xy, xy] = 1 implies that [y, x, x] = 1 and so $y \in E_G^2(x)$. Now, for every $g \in E_G^2(x)$ we have

$$[xy, g, g] = 1 \Rightarrow [y, g, g] = 1$$
 and $[g, xy, xy] = 1 \Rightarrow [g, y, y] = 1$.

Thus $g \in E_G^2(y)$ and so $E_G^2(x) \subseteq E_G^2(y)$, which is a contradiction.

By the same argument if $E_G^2(xy) = E_G^2(x)$ or $E_G^2(y)$ we obtain a contradiction. Hence, $E_G^2(xy) = E_G^2(yx) = E_G^2(z)$. Now, it is clear that $g \in E_G^2(x) \cap E_G^2(y)$ implies that $g \in E_G^2(xy)$ and $g \in E_G^2(x) \cap E_G^2(xy)$ implies that $g \in E_G^2(y)$. Also $g \in E_G^2(y) \cap E_G^2(xy)$ implies that $g \in E_G^2(x)$. Hence, the intersection of any two 2-Engelizers is $R_2(G)$, which gives the result. \Box

To prove our main result we need the following lemma.

Lemma 3.4. Let $|E^2(G)| = 5$ and E_i^2 be the proper 2-Engelizers of the group G, for i = 1, 2, 3, 4. Then

- (a) none of them is contained in the union of the others;
- (b) no element of G is in exactly two or three of E_i^2 's, $1 \le i \le 4$.

Proof. (a) By the contrary, assume that E_1^2 is a subset of $E_2^2 \cup E_3^2 \cup E_4^2$, and hence $G = \bigcup_{i=2}^4 E_i^2$. Theorem 3.2 implies that $G / \bigcap_{i=2}^4 E_i^2 \cong C_2 \times C_2$. Now, in this case we show that $\bigcap_{i=2}^4 E_i^2 = R_2(G)$, and then we obtain a contradiction.

Choose any $x_2 \in E_2^2 \setminus (E_3^2 \cup E_4^2)$, $x_3 \in E_3^2 \setminus (E_2^2 \cup E_4^2)$, and $x_4 \in E_4^2 \setminus (E_2^2 \cup E_3^2)$. We show that $E_i^2 = E_G^2(x_i)$, for i = 2, 3, 4. For example, assume $E_G^2(x_2) \neq E_2^2$, then we have $E_G^2(x_2) = E_1^2$. Thus $E_2^2 \setminus (E_3^2 \cup E_4^2) \subseteq E_1^2 \setminus (E_3^2 \cup E_4^2)$ and so $E_2^2 \subseteq E_1^2$. Now, we could interchange the role of E_1^2 by E_2^2 . Hence $E_1^2 = E_2^2$, which is impossible and so $E_i^2 = E_G^2(x_i)$, for i = 2, 3, 4.

Now, let $x \in \bigcap_{i=2}^{4} E_i^2 \setminus R_2(G)$, then we have the following cases:

- (i) $E_G^2(x) \neq G$, as $x \notin R_2(G)$;
- (*ii*) $E_G^2(x) \neq E_1^2$, as $x \notin E_1^2$;
- (*iii*) $E_G^2(x) \neq E_2^2$, as $x_3, x_4 \in E_G^2(x) \setminus E_2^2$;
- (iv) $E_G^2(x) \neq E_3^2$, as $x_2, x_4 \in E_G^2(x) \setminus E_3^2$;
- (v) $E_G^2(x) \neq E_4^2$, as $x_2, x_3 \in E_G^2(x) \setminus E_4^2$.

Hence $\bigcap_{i=2}^{4} E_i^2 \setminus R_2(G) = \emptyset$, which gives part (a).

(b) First take an element $x \in (E_1^2 \cap E_2^2) \setminus (E_3^2 \cup E_4^2)$, then clearly $x_1, x_2 \in E_G^2(x)$. But $x_1 \notin E_2^2$ and this implies that $E_G^2(x) \neq E_1^2$ or E_2^2 .

Also $E_G^2(x) \neq E_3^2$ or E_4^2 , as $x \notin E_3^2 \cup E_4^2$. On the other hand, $E_G^2(x) \neq G$, as $x \in G \setminus R_2(G)$. Therefore $E_G^2(x) \neq G, E_1^2, E_2^2, E_3^2$ or E_4^2 , which contradicts the number of 2-Engelizers $|E^2(G)| = 5$, and so $(E_1^2 \cap E_2^2) \setminus (E_3^2 \cup E_4^2) = \emptyset$.

Now assume that $x \in (E_1^2 \cap E_2^2 \cap E_3^2) \setminus E_4^2$, then $x_1, x_2, x_3 \in E_G^2(x)$. It can be easily seen that $E_G^2(x) \neq E_1^2$, E_2^2 or E_3^2 . Also $E_G^2(x) \neq E_4^2$ or G, as $x \notin E_4^2$ and $x \notin R_2(G)$. Therefore $E_G^2(x) \neq G, E_1^2, E_2^2, E_3^2, E_4^2$, which means $|E^2(G)|$ must be at least 6 and this gives a contradiction. Thus $(E_1^2 \cap E_2^2 \cap E_3^2) \setminus E_4^2 = \emptyset$. \Box Remark 3.5. Note that the above lemma shows that the group G is at most a disjoint union of its four proper 2-Engelizers, when $|E^2(G)| = 5$. Also, in this case we have

$$R_2(G) = \bigcap_{i=1}^4 E_i^2 = E_i^2 \cap E_j^2 \cap E_k^2 = E_i^2 \cap E_j^2,$$

for all $1 \le i \ne j \ne k \le 4$.

In the following, we compute the number of 2-Engelizers of some groups, which will be used in our final result.

(i) If $G/R_2(G) \cong S_3 = \langle xR_2(G), yR_2(G) | x^2, y^3, yy^x \in R_2(G) \rangle$. Then it is clear that $|\frac{G/R_2(G)}{H/R_2(G)}| = 2$ or 3, for every proper subgroup $H/R_2(G)$ of $G/R_2(G)$. Thus $H = R_2(G) \cup h_1R_2(G)$ or $H = R_2(G) \cup h_2R_2(G) \cup h_3R_2(G)$, where $h_1, h_2, h_3 \in H \setminus R_2(G)$. Therefore the proper subgroups of G properly containing $R_2(G)$ are as follows:

$$H_1 = R_2(G) \cup yR_2(G) \cup y^2R_2(G); \ H_2 = R_2(G) \cup xR_2(G);$$
$$H_3 = R_2(G) \cup xyR_2(G); \ H_4 = R_2(G) \cup xy^2R_2(G).$$

Take an element $a \in G \setminus R_2(G)$ then $aR_2(G) = hR_2(G)$, for some $h \in \{y, y^2, x, xy, xy^2\}$. Thus, $E^2_{G/R_2(G)}(aR_2(G)) = E^2_{G/R_2(G)}(hR_2(G))$ and so Lemma 2.3 implies that $E^2_G(a) = E^2_G(h)$.

Now, we show that H_i 's are the only proper 2-Engelizers of G. Assume $h \in H_i \setminus R_2(G)$ and $E_G^2(h) \subseteq \bigcup_{j \neq i} H_j$, where $1 \leq i, j \leq 4$. On the other hand, $h \in E_G^2(h)$ implies that $E_G^2(h) \neq H_j$, for $1 \leq j \neq i \leq 4$. Therefore $E_G^2(h) = H_i$ gives the claim and so $|E^2(G)| = 5$.

(ii) The factor group $G/R_2(G) \cong C_2 \times C_6$, has the following presentation

$$\frac{G}{R_2(G)} = \langle xR_2(G), yR_2(G) \mid x^2, y^6, [x, y] \in R_2(G) \rangle$$

$$= \{\bar{1}, \bar{x}, \bar{y}, \bar{y^2}, \bar{y^3}, \bar{y^4}, \bar{y^5}, \bar{xy}, \bar{xy^2}, \bar{xy^3}, \bar{xy^4}, \bar{xy^5} \},$$

where $\overline{}$ means modulo $R_2(G)$.

Clearly, non-trivial proper subgroups of $G/R_2(G)$, which properly containing $R_2(G)$ are as follows:

$$\begin{split} H_1 &= R_2(G) \cup xR_2(G), H_2 = R_2(G) \cup xy^3R_2(G), H_3 = R_2(G) \cup y^3R_2(G) \\ &\quad H_4 = R_2(G) \cup y^2R_2(G) \cup y^4R_2(G), \\ H_5 &= R_2(G) \cup yR_2(G) \cup y^2R_2(G) \cup y^3R_2(G) \cup y^4R_2(G) \cup y^5R_2(G), \\ H_6 &= R_2(G) \cup xyR_2(G) \cup y^2R_2(G) \cup xy^3R_2(G) \cup y^4R_2(G) \cup xy^5R_2(G), \\ H_7 &= R_2(G) \cup xy^2R_2(G) \cup y^4R_2(G) \cup xR_2(G) \cup y^2R_2(G) \cup xy^4R_2(G). \end{split}$$

Lemma 2.3 implies that H_i 's are the proper 2-Engelizers of $G/R_2(G)$, for $1 \leq i \leq 4$.

Now, in the subgroups H_5 , H_6 and H_7 , if $aR_2(G) = bR_2(G)$, for $a \neq b$, then $a^{-1}b \in R_2(G)$. Remark 2.5 implies that a = b, which is a contradiction and so $|E^2(G)| = 8$.

(*iii*) Let $G/R_2(G) \cong A_4$ be the alternating group of degree 4. Then by a similar argument as part (*i*), non-trivial proper subgroups of $G/R_2(G)$ which properly containing $R_2(G)$ are as follows:

$$\begin{split} H_1 &= R_2(G) \cup (1,2)(3,4) R_2(G), H_2 = R_2(G) \cup (1,3)(2,4) R_2(G), \\ H_3 &= R_2(G) \cup (1,4)(2,3) R_2(G), H_4 = R_2(G) \cup (1,2,3) R_2(G) \cup (1,3,2) R_2(G), \\ H_5 &= R_2(G) \cup (1,2,4) R_2(G) \cup (1,4,2) R_2(G), \\ H_6 &= R_2(G) \cup (1,3,4) R_2(G) \cup (1,4,3) R_2(G), \\ H_7 &= R_2(G) \cup (2,3,4) R_2(G) \cup (2,4,3) R_2(G). \end{split}$$

Lemma 2.3 implies that H_i 's are the only proper 2-Engelizers of $G/R_2(G)$, for $1 \leq i \leq 7$ and hence $|E^2(G)| = 8$.

(*iv*) Let $G/R_2(G)$ be a semidirect product of cyclic groups of order 3 by the one of order 4, i.e.

$$\frac{G}{R_2(G)} \cong C_3 \rtimes C_4 = \langle xR_2(G), yR_2(G) \mid x^3, y^4, x^y x \in R_2(G) \rangle$$
$$= \{1, x, x^2, y, y^2, y^3, xy, xy^2, xy^3, x^2y, x^2y^2, x^2y^3\}.$$

Then by a similar argument as in the previous parts, non-trivial proper subgroups of $G/R_2(G)$, which properly containing $R_2(G)$ are as following

$$\begin{split} H_1 &= R_2(G) \cup y^2 R_2(G), H_2 = R_2(G) \cup x R_2(G) \cup x^2 R_2(G), \\ H_3 &= R_2(G) \cup y R_2(G) \cup y^2 R_2(G) \cup y^3 R_2(G), \\ H_4 &= R_2(G) \cup x y R_2(G) \cup y^2 R_2(G) \cup x y^3 R_2(G), \\ H_5 &= R_2(G) \cup x^2 y R_2(G) \cup y^2 R_2(G) \cup x^2 y^3 R_2(G), \\ H_6 &= R_2(G) \cup x y^2 R_2(G) \cup x^2 R_2(G) \cup y^2 R_2(G) \cup x R_2(G) \cup x^2 y^2 R_2(G). \end{split}$$

By a similar argument as used in part (i), we conclude that $|E^2(G)| = 7$. The following result characterizes the factor group $G/R_2(G)$, when the group G is five 2-Engelizers.

Theorem 3.6. Let G be a finite group with $|E^2(G)| = 5$, then $G/R_2(G) \cong C_3 \times C_3, D_{12}, C_2 \times C_6, C_3 \rtimes C_4, A_4$ or S_3 .

Proof. Assume that $|E^2(G)| = 5$ then using Lemma 3.4 and Remark 3.5, there exist only four distinct 2-Engelizers such that $G = \bigcup_{i=1}^{4} E_i^2$. Hence

$$|G| = |E_1^2 \cup E_2^2 \cup E_3^2 \cup E_4^2| = |E_1^2| + |E_2^2| + |E_3^2| + |E_4^2| - 3|R_2(G)|.$$

Now, for computing the value of $|R_2(G)|$, we show that if E_i^2 and E_j^2 are arbitrary distinct proper 2-Engelizers of G, for $1 \leq i \neq j \leq 4$, then

$$\frac{|E_i^2||E_j^2|}{|G|} \leqslant |R_2(G)| \leqslant \frac{|G|}{6}.$$
 (*)

102

Clearly, $\frac{|E_i^2||E_j^2|}{|E_i^2E_j^2|} = |E_i^2 \bigcap E_j^2|$, and since $E_i^2E_j^2 \subseteq G$, we have $\frac{1}{|E_i^2E_j^2|} \ge \frac{1}{|G|}$. Therefore $|E_i^2 \bigcap E_j^2| \ge \frac{|E_i^2||E_j^2|}{|G|}$ implies that $|R_2(G)| \ge \frac{|E_i^2||E_j^2|}{|G|}$. On the other hand, one observes that

$$\begin{aligned} |G| &= |E_1^2| + |E_2^2| + |E_3^2| + |E_4^2| - 3|R_2(G)| \\ &\geq 2|R_2(G)| + 2|R_2(G)| + 2|R_2(G)| + 2|R_2(G)| - 3|R_2(G)| = 5|R_2(G)|, \end{aligned}$$

and hence $\frac{|G|}{|R_2(G)|} \ge 5$. Assume $\frac{|G|}{|R_2(G)|} = 5$, then $\frac{G}{R_2(G)}$ is cyclic and so G is 2-Engel group, which implies that $\frac{|G|}{|R_2(G)|} \ge 6$ and proves the claim of (*).

Now without loss of generality, we may assume that $|E_1^2| \ge |E_2^2| \ge |E_3^2| \ge |E_4^2|$. Suppose $|E_1^2| \le \frac{|G|}{4}$, then we have

$$G| = |E_1^2| + |E_2^2| + |E_3^2| + |E_4^2| - 3|R_2(G)|$$

$$\leq \frac{|G|}{4} + \frac{|G|}{4} + \frac{|G|}{4} + \frac{|G|}{4} - 3|R_2(G)| = |G| - 3|R_2(G)|,$$

which is a contradiction. Hence $|E_1^2| = \frac{|G|}{2}$ or $\frac{|G|}{3}$. If $|E_1^2| = \frac{|G|}{2}$, we get

$$G| = |E_1^2| + |E_2^2| + |E_3^2| + |E_4^2| - 3|R_2(G)|$$

= $\frac{|G|}{2} + |E_2^2| + |E_3^2| + |E_4^2| - 3|R_2(G)|.$

One can easily calculate that

$$\frac{|G|}{2} < |E_2^2| + |E_3^2| + |E_4^2| \le 3|E_2^2|$$

and so $\frac{|G|}{6} < |E_2^2|$.

Now applying (*) to E_1^2 and E_2^2 , we have $\frac{|E_1^2||E_2^2|}{|G|} \leq \frac{|G|}{6}$ and hence $|E_2^2| \leq \frac{2|G|}{6}$. That is $\frac{|G|}{6} < |E_2^2| \leq \frac{|G|}{3}$, so $|E_2^2| = \frac{|G|}{5}$, $\frac{|G|}{4}$ or $\frac{|G|}{3}$. The property $\frac{|E_1^2||E_2^2|}{|G|} \leq |R_2(G)| \leq \frac{|G|}{6}$ implies that $\frac{|G|}{10} \leq |R_2(G)| \leq \frac{|G|}{6}$. Therefore the value of $|R_2(G)|$ must be one of $\frac{|G|}{6}$, $\frac{|G|}{7}$, $\frac{|G|}{8}$, $\frac{|G|}{9}$ or $\frac{|G|}{10}$.

Now if $|R_2(G)| = \frac{|G|}{7}$, then $|R_2(G)|$ divides $|E_1^2|$, and hence 2 | 7, which is impossible. Similarly $|R_2(G)| \neq \frac{|G|}{9}$. Assume $|R_2(G)| = \frac{|G|}{6}$ then $|\frac{G}{R_2(G)}| = 6$ and as $\frac{G}{R_2(G)}$ can not be cyclic, hence $\frac{G}{R_2(G)} \cong S_3$.

Let $|R_2(G)| = \frac{|G|}{8}$, then as $|R_2(G)|$ divides $|E_2^2|$, if $|E_2^2| = \frac{|G|}{3}$, then 3 | 8 and if $|E_2^2| = \frac{|G|}{5}$ then 5 | 8, which both give contradictions. Therefore $|E_2^2| = \frac{|G|}{4}$. Also, the property $|G| = |E_1^2| + |E_2^2| + |E_3^2| + |E_4^2| - 3|R_2(G)|$ implies that $\frac{|G|}{4} = |E_3^2| + |E_4^2| - 3\frac{|G|}{8}$, and hence $\frac{5|G|}{8} = |E_3^2| + |E_4^2|$. As $|E_3^2|, |E_4^2| \leq \frac{|G|}{4}$, we obtain $\frac{5|G|}{8} = |E_3^2| + |E_4^2| \leq \frac{|G|}{2}$, which is again a contradiction. So $|R_2(G)|$ can not be equal to $\frac{|G|}{8}$.

Finally, assume that $|R_2(G)| = \frac{|G|}{10}$ and $|R_2(G)|$ divides $|E_2^2|$. If $|E_2^2| = \frac{|G|}{3}$ then 3 | 10, and if $|E_2^2| = \frac{|G|}{4}$ then 4 | 10, which are both impossible. Therefore $|E_2^2| = \frac{|G|}{5}$. Now, again $|G| = |E_1^2| + |E_2^2| + |E_3^2| + |E_4^2| - 3|R_2|$ implies that

 $|E_3^2| + |E_4^2| = \frac{6|G|}{10}$. Also, $|E_2^2| \ge |E_3^2| \ge |E_4^2|$ implies that $\frac{6|G|}{10} = |E_3^2| + |E_4^2| \le \frac{2|G|}{5}$, which is a contradiction. Hence $|R_2(G)| \ne \frac{|G|}{10}$.

Now, assume that $|E_1^2| = \frac{|G|}{3}$. In this case, using

$$|G| = |E_1^2| + |E_2^2| + |E_3^2| + |E_4^2| - 3|R_2(G)|,$$

we have $\frac{2|G|}{3} < |E_2^2| + |E_3^2| + |E_4^2| \leq 3|E_2^2|$. Thus $|E_2^2| > \frac{2|G|}{9}$. On the other hand, $|E_1^2| \ge |E_2^2|$ and so $\frac{2|G|}{9} < |E_2^2| \leq \frac{|G|}{3}$. Therefore $|E_2^2| = \frac{|G|}{3}$ or $\frac{|G|}{4}$. Again applying (*) on E_1^2 and E_2^2 we get,

$$\frac{|E_1^2||E_2^2|}{|G|} \le |R_2(G)| \le \frac{|G|}{6}$$

Thus $\frac{|G|}{12} \leq |R_2(G)| \leq \frac{|G|}{6}$, and hence $|R_2(G)| = \frac{|G|}{6}, \frac{|G|}{7}, \frac{|G|}{8}, \frac{|G|}{9}, \frac{|G|}{10}, \frac{|G|}{11}$ or $\frac{|G|}{12}$.

Assume that $|R_2(G)| = \frac{|G|}{7}$, and as $|R_2(G)|$ divides $|E_1^2|$ we must have 3 | 7, which is impossible. Similarly $|R_2(G)| \neq \frac{|G|}{8}, \frac{|G|}{10}$ and $\frac{|G|}{11}$. Also, assume that $|R_2(G)| = \frac{|G|}{6}, |E_1^2| = \frac{|G|}{3}$, and $|E_2^2| = \frac{|G|}{4}$ or $\frac{|G|}{3}$, then

$$|G| = |E_1^2| + |E_2^2| + |E_3^2| + |E_4^2| - 3|R_2(G)|,$$

again implies that $\frac{11|G|}{12} = |E_3^2| + |E_4^2| \leq \frac{|G|}{2}$ or $\frac{5|G|}{6} = |E_3^2| + |E_4^2| \leq \frac{2|G|}{3}$, respectively, which are both impossible. Hence $|R_2(G)| \neq \frac{|G|}{6}$, and so we have one of the following cases:

$$|R_2(G)| = \frac{|G|}{12} \Rightarrow \frac{|G|}{|R_2(G)|} = 12 \Rightarrow \frac{G}{R_2(G)} \cong C_{12}, A_4, D_{12}, C_3 \rtimes C_4, C_2 \times C_6,$$

or

$$|R_2(G)| = \frac{|G|}{9} \Longrightarrow \frac{|G|}{|R_2(G)|} = 9 \Longrightarrow \frac{G}{R_2(G)} \cong C_9, C_3 \times C_3.$$

On the other hand, $\frac{G}{R_2(G)}$ can not be cyclic, as G is not 2-Engel group. Thus $\frac{G}{R_2(G)} \cong D_{12}, C_2 \times C_6, A_4, C_3 \rtimes C_4$ or $C_3 \times C_3$.

Note that, Proposition 2.4, Theorem 3.1 and Example 3.6 imply that the converse of the above result is not true in general. One can easily see that, if $G/R_2(G) \cong D_{12}, C_3 \times C_3$ or S_3 , then $|E^2(G)| = 5$.

Acknowledgments

The authors would like to thank the referee for the helpful suggestions, which made some improvements of the article.

References

 A. Abdollahi, Engel Elements in Groups, In C. Campbell, M. Quick, E. Robertson, C. Roney-Dougal, G. Smith, G. Traustason (Eds.), Groups St Andrews 2009 in Bath (London Mathematical Society Lecture Note Series, pp. 94–117). Cambridge: Cambridge University Press.

- A. R. Ashrafi, On Finite Groups with a Given Number of Centralizers, Algebra Colloq., 7(2), (2000), 139–146
- S. M. Belcastro, G. J. Sherman, Counting Centralizers in Finite Groups, *Math. Mag.*, 67(5), (1994), 366–374.
- M. Bruckheimer, A. C. Bryan, A. Muir, Groups which Are the Union of Three Subgroups, Amer. Math. Monthly, 77(1), (1970), 52–57.
- S. M. Jafarian Amiri, M. Amiri, H. Rostami, Finite Groups Determined by the Number of Element Centralizers, *Comm. Algebra*, 45(9), (2017), 3792–3797.
- L.-C. Kappe, Right and Left Engel Elements in Metabelian Groups, Comm. Algebra, 9(12), (1981), 1295–1306.
- 7. W. Kappe, Die A-Norm Einer Gruppe, Illinois J. Math., 5, (1961), 187–197.
- M. R. R. Moghaddam, M. A. Rostamyari, 2-Engelizer Subgroup of a 2-Engel Transitive Groups, Bull. Korean Math. Soc., 53(3), (2016), 657-665.
- 9. D. J. S. Robinson, *Finiteness Conditions and Generalized Soluble Groups*, Part 2, Springer, 1972.
- G. Scorza, I Gruppi che Possono Pensarsi Come Somma di Tre Loro Sottogruppi, Boll. Un. Mat. It., 5, (1926), 216–218.